The Different Effect of Decellularized Myocardial Matrix Hydrogel and Decellularized Small Intestinal Submucosa Matrix Hydrogel on Cardiomyocytes and Ischemic Heart

نویسندگان

چکیده

Injectable decellularized matrix hydrogels derived from either myocardium or small intestinal submucosa (pDMYO-gel, pDSIS-gel) have been successfully used for myocardial injury repair. However, the relationship between tissue-specific biological functions and protein composition in these two materials is not clear yet. In this study, composition, mechanical properties, morphology of their effects on behavior neonatal rat cardiomyocytes (NRCMs) human umbilical vein endothelial cells (HUVECs), are investigated. The results show that pDMYO-gel more conducive to growth, adhesion, spreading, maintenance normal NRCM beating, due its higher proportion extracellular (ECM) glycoproteins (49.55%) some unique functional proteins such as annexin-6 (ANXA6), agrin (AGRN), cathepsin D (CTSD) galectin-1 (LGALS1), whereas pDSIS-gel proliferation HUVECs. Animal study shows has a better effect improving cardiac function, inhibiting fibrosis maintaining ventricular wall thickness acute infarction models vivo. Therefore, it proposed injectable hydrogel may be suitable recovery injuries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Optimizing Recellularization of Whole Decellularized Heart Extracellular Matrix

RATIONALE Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. However, after transplantation, these acellular vascular conduits clot, even with anti-coagulation. Here, our objective was to create a...

متن کامل

Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration

Heart attack is a global health problem that leads to significant morbidity, mortality, and health care burden. Adult human hearts have very limited regenerative capability after injury. However, evolutionarily primitive species generally have higher regenerative capacity than mammals. The extracellular matrix (ECM) may contribute to this difference. Mammalian cardiac ECM may not be optimally i...

متن کامل

Extracellular matrix in deoxycholic acid decellularized aortic heart valves

BACKGROUND Only limited information is available regarding the influence of decellularization on the extracellular matrix in heart valves. Within the extracellular matrix proteoglycans (PG) play a central role in the structural organization and physical functioning of valves and in their capability of settling with endothelial and interstitial cells partially myofibroblasts. We have therefore e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11177768